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Abstract
This article has two objectives: First, the article seeks to make a methodological intervention in the 
social study of algorithms. Second, the article traces ethnographically how an algorithm was used to 
enact a pandemic, and how the power to construct this disease outbreak was moved around through 
an algorithmic assemblage. The article argues that there is a worrying trend to analytically reduce 
algorithms to coherent and stable objects whose computational logic can be audited for biases to 
create fairness, accountability, and transparency (FAccT). To counter this reductionist and determinist 
tendency, the article proposes three methodological rules that allows an analysis of algorithmic power 
in practice. Empirically, the article traces the assembling of a recent epidemic at the European Centre 
for Disease Control and Prevention—the Zika outbreak starting in 2015—and shows how an epidemic 
was put together using an array of computational resources, with very different spaces for intervening. 
A key argument is that we, as analysts of algorithms, need to attend to how multiple spaces for agency, 
opacity, and power open and close in different parts of algorithmic assemblages. The crux of the matter 
is that actors experience different degrees of agency and opacity in different parts of any algorithmic 
assemblage. Consequently, rather than auditing algorithms for biased logic, the article shows the 
usefulness of examining algorithmic power as enacted and situated in practice.
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The aim of this article twofold: to make an empiri-
cal contribution to our understanding of how 
pandemics are put together with algorithms, 
and a methodological intervention in the social 
analysis of algorithms. As multiple epidemics 
and pandemics sweep our interconnected and 
globalized world—not least the COVID-19 pan-
demic which is holding society in a vice as I write 
this—it is becoming crucial to understand how 
a pandemic comes about through various infra-
structures, algorithms, models, sensors, practices, 
and decisions.

The empirical focus of the article is the algo-
rithmic making of the Zika pandemic which 
emerged in close proximity to the Olympics in Rio 
de Janeiro in 2015-2016, and started spreading 
around the world, raising concerns that the 
disease would spread globally.1 The article traces 
the work of assembling a particular version of this 
epidemic, called the Current Zika State—a map 
of the spread and intensity of the Zika pandemic 
(see Figure 1). The Current Zika State was the 
official version of the Zika pandemic that the 
European Center for Disease Control and Preven-
tion, the ECDC, published. The Current Zika State 
was generated by what my informants called the 
Zika Algorithm.

The empirical aim of the article is to shine light 
on how this algorithm enacted the Zika pandemic. 

That is, how the social and natural orders of Zika 
were assembled at the ECDC and how various 
quantifications, models and classifications—from 
faraway times and places—were folded into the 
Zika Algorithm with consequences for different 
actors’ space for agency, opacity, and power 
(cf. Lee et al., 2019). For my informants, the Zika 
Algorithm promised automation, simplicity, and 
orderliness—an unambiguous and automated 
map of the Zika pandemic.

This means that we are dealing here with a 
particular kind of assemblage that my inform-
ants and I refer to as an algorithm.2 In practice, 
an algorithm is a multifaceted object that can be 
many different things and is interpreted and used 
differently in different settings. But, rather than 
defining it along the lines of computer scientists 
or health professionals (who call different things 
algorithms) this article approaches algorithms 
in an emic manner (cf. Dourish, 2016; Seaver, 
2017). This means that I follow my informants 
in their various makings of what they call the 
Zika Algorithm. In essence, I follow the work of 
my informants of assembling, stabilizing, and 
interpreting the Current Zika State with the Zika 
Algorithm, and how agency, opacity and power 
were distributed in this assemblage.3

Using this case as a springboard, I argue that 
much social analysis of algorithms risks falling in 

Figure 1. The Current Zika State as published on the website of the European Center for Disease Control and 
Prevention on 29 Aug 2017
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an epistemic trap by importing a stabilized and 
delineated notion of algorithms from computer 
science (cf. Muniesa, 2019). I argue that this 
epistemic trap underpins much of today’s algo-
rithmic critique which focuses on the power of the 
black-boxed algorithm (Pasquale, 2016), different 
degrees or types of opacity (Burrell, 2016; Diako-
poulos, 2020; Larsson and Heintz, 2020), biased 
search results (Sandvig et al., 2016), algorithmic 
oppression (Noble, 2018; O’Neil, 2016), or quanti-
tative auditing (Sandvig et al., 2014).

This argument is political to the highest degree. 
What is at stake is how we understand and analyze 
power in an algorithmic society. The crux of the 
matter is that arguments about automated, black-
boxed, biased/objective, opaque/transparent 
algorithms perform a punctualization of agency 
and politics, which risks transferring the politics 
of technoscience to the realm of the technical 
artefact, rather than how power is distributed in 
assemblages. As one of my interlocutors humor-
ously put it: “Well, isn’t it useful to point the finger 
at the algorithm!”—when we should be having 
discussions about the use and broader effects that 
algorithms have on society.4 Instead of analyzing 
the racist algorithm we should be looking at 
racist assemblages—and where the possibility for 
agency, choice, and power reside in these assem-
blages.

By following the algorithmic enactment of 
the Current Zika State, the article demonstrates 
the usefulness of three methodological rules 
in the study of algorithms: 1) Don’t punctualize 
agency to the algorithm; instead attend to how 
agency and choice are assembled. 2) Abandon 
the opaque/transparent binary; instead attend to 
multiple and situated translucencies. 3) And last, 
dispense with the algorithm as the prime mover; 
instead attend to how power clusters and disperses 
in assemblages. The argument is that we need 
to analyze the effects that different algorithmic 
assemblages have in the multiple practices where 
they are made, tinkered with, and used, rather 
than focusing on the inherent politics of the black 
boxed algorithm.5

Algorithms, the very idea: 
on the epistemic trap of the 
black boxed algorithm
Social studies of algorithms have since the out-
set acknowledged the fluidity and assembled 
nature of algorithms, at the same time as the field 
has lamented the inscrutability and power of the 
algorithm. Goffey (2008) for instance describes 
the nature of algorithms as part of long chains 
of actions upon actions, at the same time as he 
argues that “Algorithms do things, and their syn-
tax embodies a command structure to enable this 
to happen” (Goffey, 2008: 17). While Gillespie con-
cludes that the ”there may be something, in the 
end, impenetrable about algorithms.” (Gillespie, 
2014: 192).6 Powerful black boxes indeed.

Thus, in debates about the theory and methods 
of social studies of algorithms, there exists an 
oscillation—often in the same papers—between 
on the one hand acknowledging the fluidity, 
complexity and assembled characteristics of 
algorithms (Seaver, 2017, 2018), and on the other 
hand a notion of algorithms as stable and deline-
ated objects, existing out there, that can be unfair, 
unaccountable, opaque, and biased, and in the 
need of auditing in order to rectify said biases 
(Diakopoulos, 2016; Pasquale, 2011; Sandvig et al., 
2014).7

My argument is that this oscillation in how 
algorithms are understood analytically—on the 
one hand as fluid and assembled, and on the 
other as delineated objects that can be made fair, 
accountable, and transparent (the famous FAT 
movement, now FAccT) makes for a precarious 
analytical vantage point for the social sciences.8

One reason for this precariousness is that we 
social scientists, as Muniesa has argued, have 
taken over a “vocabulary of information in the 
analysis of social realities” (Muniesa, 2019: 200). 
That is, by taking on the vocabulary of our inform-
ants—that we indeed analyze an object called 
algorithm—we have fallen into an epistemic trap 
that delineates, stabilizes, and delimits our objects 
of study as well as our analytical problems.

My point is that we—along with our inform-
ants, computer science, and the media—perform 
algorithms as clearly delineated and pre-existing 
objects that can be analyzed in themselves. By 
falling into this epistemic trap we perform algo-
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rithms as punctualized (Callon, 1991). That is, by 
treating algorithms as stable objects “out there” 
we—social scientists—ascribe agency and power 
to this performed object, instead of paying 
attention to the assembling of agency in practice 
and the performative effects that the assemblage 
has (cf. Callon and Law, 1995).

Consequently, when we talk about the “power 
of the black boxed algorithm” or “auditing the 
algorithm,” we start thinking about this performed 
object as being the object for our own studies—
with concomitant forms of problematizing 
algorithms in society. In this way the algorithm 
becomes a seemingly naturalized object for 
social analysis, which leads to particular forms of 
political and analytical action: Analyze and audit 
the powerful black boxed algorithm!9

The two cultures of 
algorithm studies
These different analytical approaches to algo-
rithms—one where they are understood as delin-
eated and stabilized objects and the other as fluid 
and assembled—create very different under-
standings of the politics of algorithms. And also 
very different problematizations of how to ana-
lyze the currently unfolding algorithmic society 
(cf. Lee and Björklund Larsen, 2019).

The stabilized notion of algorithms seems to 
treat algorithms as having political qualities “under 
the hood.” In this view, the algorithm—as an 
object for us to audit and investigate—is treated 
as having stable qualities that shape society in 
particular ways, which makes the “politics of the 
artefact” the natural analytical focus (cf. Winner, 
1980). Consequently, we take on the epistemic 
objects of computer science as our own—and 
become auditors of the stabilized algorithm. 
(Auditing is of course an important function in a 
world run by algorithms. No disagreement there!) 
But, I argue, nonetheless this epistemic trap leads 
to simplified understandings of how algorithmic 
power works in society.10

In my view, the central problem with the 
stabilized and punctualized understanding of 
algorithms is that we take on a reductionist and 
determinist view of the politics of algorithmic 
assemblages. For sure, algorithmic assemblages 
do have power. But it is seldom an autonomous 

power, where algorithms act on their own to 
oppresses the poor, but rather as Goffey (2008) 
and others have acknowledged, it is a rhizomatic 
and capillary power that works by actions upon 
actions.

This article suggests that to understand the 
politics of algorithms we need to be wary of 
importing this punctualized view of the “black 
boxed algorithm,” and keep our awareness of 
how algorithmic assemblages structure power in 
multiple and dispersed practices. Don’t let social 
science become the algorithmic auditors that 
computer science might imagine it needs.

In sum, my argument isn’t that algorithmic 
assemblages are powerless—quite the contrary 
they are very powerful—but rather that we as 
social analysts need to be aware of when we are 
taking over the object definitions of computer 
scientists, politicians, or auditors as they risk 
leading to impoverished understandings of how 
our world is enacted with algorithmic assem-
blages. Below, I will show the futility of attending 
to the punctualized version of algorithms and, in 
conclusion, suggest three methodological rules to 
break out this epistemic trap.

Let us now return to the issue at hand, the 
enactment of the Zika Algorithm and the Current 
Zika State—and how spaces for agency, transpar-
ency, and power are configured in these assem-
blages.

Assembling pandemics
In disease surveillance today, the knowledge 
of disease outbreaks is increasingly produced 
through an abundance of technical, political, and 
animal infrastructures.11 These infrastructures are 
constantly working in organizations across the 
globe. In the west, the US Center for Disease Con-
trol (CDC), the WHO, and the ECDC are endlessly 
monitoring their screens, attempting to detect 
the next big outbreak of disease; in the South and 
East the Chinese and Brazilian CDCs are impor-
tant hubs.12 Currently, these information infra-
structures are reshaping our knowledge about 
epidemics: new disease patterns and outbreaks 
becoming visible through the development of 
new infrastructures (Caduff, 2014; Kelly, 2018; Lee, 
2020; Mackenzie, 2014; Sanches and Brown, 2018).

Science & Technology Studies 34(1)



69

Lee

At the ECDC outbreaks are continually being 
assembled, updated, displayed, and debated 
about. A host of methods are used to classify and 
value disease intensities, disease threats, and 
disease risks, which can lead to conflicts between 
different actors about the understanding of an 
outbreak (Keck, 2008; Lee, 2020). One visualiza-
tion, which has been part of disease control for 
hundreds of years, involves enumerating cases in 
time and space. Others involve making risk calcu-
lations based on environmental models, tracing 
food stuffs through distribution networks, tracking 
genetic relations between pathogens, or using 
social media to find likely places of contagion.

To visualize these classifications and valuations 
of disease intensities, risks, and predictions there 
are a number of well-established visualizations 
that are harnessed in order to establish where in 
time and space the outbreak is at the moment. 
For example: There is the infamous epidemic 
curve, or epicurve, which enacts a disease as the 
number of cases on a timeline. The epicurve is an 
iconic part of disease surveillance highlighting the 
disease intensity over time, producing images of 
the development of a disease outbreak, COVID-19, 
different strains of Flu, Ebola, and Zika are all 
visualized in time series showing the severity of 
disease (cf. Kelly, 2018; Mackenzie, 2014). There 
is the contact-tracing chart, which exhibits a 
network of potential disease pathways between 
patients. 

Last, and most importantly for the assembling 
of the Current Zika State, there are an abundance 
of maps produced visualizing where disease risk 
and disease intensities are highest. The produc-
tion of maps lies at the heart of disease control. 
Maps are produced of most outbreaks on different 
scales and with different purposes. COVID-19 
maps, influenza maps, yellow fever maps, Zika 
maps, Ebola maps. For the surveillance of disease, 
maps are tools to determine the source of disease, 
tools for tracking how a disease spreads, or a tool 
for making recommendations for action.

The visualizations that are produced at the 
ECDC make political waves. Disease is tied to 
lock-downs, tourism, food supplies, and work. 
The presence of disease is a delicate matter: 
COVID-19 maps reshape our whole lives, Zika 
created headlines around the world, Salmonella 

can cause the closure of industrial egg handling 
facilities, and so on. This puts knowledge produc-
tion of pandemics in a position where disease, 
international trade, national economies, interna-
tional relations, tourism, and national politics can 
become implicated at any moment.13 

At the ECDC these visualizations are crucial 
tools for understanding, discussing, and commu-
nicating with disease professionals, decision-
making politicians, and the public. Below we 
follow the assembling of a particular visualization, 
a map that classifies the world into different inten-
sities of disease, and different areas of disease risk. 
The Current Zika State is a vehicle for enacting a 
classification of society and nature. It produces the 
social and natural orders of a Zika pandemic.14

An ethnography of the 
Zika Algorithm
Empirically, the article draws on fieldwork in a 
larger project that examines how new information 
infrastructures shape disease surveillance. The 
project commenced in 2015 with a preliminary 
study that inquired into the rise of so-called info-
demiology, that is, the harnessing of new types 
of data in disease surveillance (cf. Fearnley, 2008). 
These new types of data can for example entail 
genetic data, web searches, tweets, sales data, or 
travel information.

The material for this article used a strategy of 
multi-sited ethnography to follow the assem-
bling of the Current Zika State inside and outside 
the ECDC (cf. Marcus, 1995). The article draws on 
a multitude of different materials and strategies 
of data collection: situated fieldwork, document 
analysis, and interviews done during 2016, 2017, 
and 2018. Hence, in this engagement with the Zika 
Algorithm, I followed the assemblage through a 
variety of places, situations, and materials.

The fieldwork at the ECDC consisted of three 
weeks of participant observation in the epidemic 
intelligence team in early 2017, as well as weekly 
follow up observations with other teams during 
the following spring. During the first round of 
fieldwork I worked in the so-called epidemic intel-
ligence team, where I performed routine disease 
surveillance. This team is tasked with trawling 
social media, news media, and a constant flow 
of email to find and assess new disease threats. 
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During fieldwork, I attended meetings, partici-
pated in staff training, and interviewed my inform-
ants formally and informally in the epidemic 
intelligence team and other teams.

This situated fieldwork served as a springboard 
for a wider investigation into the making of the 
Zika Algorithm, where I complemented the initial 
period of participant observation with interviews 
and extensive document analysis following where 
the algorithmic assemblage led. Thus, the current 
article draws on participant observation, informal 
conversations, interviews, working documents, 
flowcharts, official ECDC publications, as well as 
other scientific publications.

Accordingly, this paper takes its starting point 
in the observation of a meeting about the Zika 
Algorithm at the ECDC, and branches out into 
interviews, observations from other meetings, 
document studies, and interviews. In short, I have 
followed the Zika Algorithm to the many sites 
where it was assembled.

The Zika Algorithm
Me and my informants Thomas, and Bertrand are 
in the Emergency Operations Centre—a situation 
room for disease control—at the ECDC after the 
daily roundtable meeting. At this daily meeting, 
disease experts from across the ECDC gather to 
assess today’s disease threats against the European 
population. Thomas and Bertrand are gearing up to 
have a meeting on an algorithm that produces the 
Current Zika State. 

Bertrand has worked for months to produce 
this new algorithm for classifying the world into 
zones of Zika risk. The goal is to construct an 
algorithm that will help to automate the work of 
putting together a snapshot of the Zika epidemic. 
This particular meeting is to start translating the 
Zika Algorithm (in the form of a logical flowchart) 
into layers of code, visualizations, and software. 
The resulting map, titled the Current Zika State, 
is published online, and included in regularly 
recurring reports about the state of the Zika 
epidemic. 

At the meeting, the visual focus has become a 
flowchart (Figure 2) as well as a bewildering array 
of database tables. They are all projected on the 

Figure 2. Bertrand’s provisional Zika algorithm

Is an area endemic for ZIKV ?
Expert-base review based on above laboratory

criteria
Yes No

Category 2
Area with endemic transmission

First case occurred
after

January 2015 ?

No

No known documented past
or current ZIKV transmission

Is competent vector
present  in the area1 ?

(Ae. aegypti)
NoYes Area with no vector-borne

transmission

What is time since
the last reported
confirmed case  ?

ZIKV confirmed case within
12 months3

No ZIKV confirmed case
within 12 months3

Category 3
Area with interrupted transmission with

potential for future transmission
Countries where transmission has not  been
interrupted and defined as confirmed year-
round vector-borne transmission of ZIKV

What is the length
of transmission ?More than 2 years Less than two year

Category 1
Area with new introduction and re-introduction

with ongoing transmission

Note:

(1) An area is defined by an area at countries/
territories/subnational which depends on data
availability and  should be of a size that allows
meaningful characterization of the transmission
dynamic.

(2): This category  encompasses  all areas where
main competent vector (Aedes aegypti) is present
or expected to be present.  This category includes
a sub-group of countries/territories/subnational
areas where ZIKV transmission may occur as they
share a physical ground border with a
neighbouring endemic area, belong to the same
ecological zone and have evidence of year-round
dengue virus transmission.

(3):  Period might be reduced to 3 months in
settings with high capacity for diagnostic testing,
timely reporting of diagnostic results, a
comprehensive arboviral surveillance system, and
a temperate climate/insular context.

Category 4
Area with presence of competent vector but no

known documented past or current ZIKV
transmission2

Review of ika virus (ZIKV) humans cases (vector
transmitted)

, mosquitoes or animals viral detection and/or sero-
surveys

Evidence of Zika
virus circulation ?

Laboratory criteria to ascertain the  endemicty of Zika virus (ZIKV) in an area1 : Detection of the virus in humans, animals
or mosquitoes (Period:1950-2014), and/or serologic confirmation of ZIKV infection with tests conducted after 1980.Yes

Yes
No cases before

and after
January 2015
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huge screen that fills one wall of the Emergency 
Operations Centre. The flowchart visually outlines 
the Zika-algorithm that is used to classify a 
country’s Zika risk. 

After quickly running through the flowchart 
version of the algorithm, Bertrand clicks between 
different columns and datasets in the database to 
show what data is needed to produce the color-
coded Zika map. Bertrand keeps saying that it 
is easy, and Thomas keeps nodding his head in 
agreement. 

—“The classification is based on dates. Basta!” says 
Bertrand 

The classification of geographical regions 
according to when the date of the last case was 
reported is treated as unproblematic. Everyone 
agrees—the classification based on dates is 
unproblematic. The question “where is Zika?” has 
become phrased as “where and when are Zika 
cases reported?”  (Fieldnotes)

At the most basic level, the Zika Algorithm is 
assembled as a series of questions that aim to 
produce a Zika classification of the world:

◊	 Is the mosquito that transmits Zika, Aedes 
aegypti, in the area? 

◊	 Is there evidence of Zika virus circulation? 
◊	 Is an area endemic for the Zika virus? 
◊	 When did the first Zika case occur? 
◊	 What is the time since last confirmed case? 
◊	 What is the temporal length of transmission?

These questions, which are also articulated in the 
flowchart version of the Zika Algorithm have been 
translated into computational form by Thomas 
and Bertrand—layering, as we will see below, 
several computations, databases and models and 
transforming them into a series of classifications 
that are then shown on a world map—the Current 
Zika State. However, things are not simple and 
straightforward. As we will see below, Bertrand’s 
statement “The classification is based on dates. 
Basta!” is full of caveats, nooks, and crannies. At 
every turn, the production of the algorithm is 
folded with different datasets, different manners 
of judgment, and different tools for counting and 
classifying. And all these folds configure algorith-
mic power differently (cf. Mackenzie, 2014).

ECDC: situated translucencies 
| situated agencies

Back to Thomas and Bertrand’s meeting: the quality 
of disease surveillance in different countries has 
come up. The meeting has paused for a moment. 
After clicking through a myriad of tabs on the 
database, Bertrand stops his clicking and highlights 
a yellow-tinted column of data on the wall-screen 
of the Emergency Operations Centre. He explains 
that the database column he has highlighted 
details the quality of disease surveillance in 
different countries. Bertrand zooms in on the 
column and shows that it classifies the surveillance 
capabilities of different countries as better or 
worse: “good,” “medium,” or “bad.” Bertrand and 
Thomas seem to take this classification for granted 
and nod their heads in agreement. Thomas turns to 
me and tells me: 

—“The Brazilian CDC is very good!”
(Fieldnotes) 

Thomas’ point is simple. Not every country on 
the globe has the same infrastructure for disease 
surveillance. And the ECDC wants to take this 
into account in producing the Current Zika State. 
What Bertrand is showing on the screen—good, 
medium, bad—is that the Zika Algorithm is also 
inscribed with an assessment of the quality of 
different countries’ disease surveillance systems. 
What my informants are concerned with is: should 
each Zika case be counted in the same way?15

The Zika Algorithm is inscribed with several 
questions about the reported cases of Zika (see 
Figure 3): “What is the time since the last reported 
confirmed case?” If there is a confirmed Zika case 
reported within the last 12-month period, the 
algorithm asks about the length of the period 
where Zika cases have been reported. If the period 
is less than two years long, the country is classified 
as “Category 1: Area with new introduction and 
re-introduction with ongoing transmission.” If the 
period is more than two years long, the country 
is classified as “Category 2: Area with endemic 
transmission.” If there are no confirmed cases 
within 12 months the country/area is assigned to 
“Category 3: Area with interrupted transmission 
with potential for future transmission.”

By asking these questions Bertrand erects 
several temporal boundaries that define different 
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classes of Zika transmission: zero Zika-cases in 
the last 12 months means interrupted transmis-
sion. More than two years of transmission means 
that the area has endemic transmission. The Zika 
cases are ordered temporally, counted, and used 
to construct different classes of Zika risk.

However, in a footnote to the flowchart version 
of the algorithm, Bertrand’s and Thomas’ concern 
for the quality of disease control—“The Brazilian 
CDC is very good”—and the yellow tinted column 
of data that Bertrand showed on the wall-screen is 
brought to the fore. The footnote specifies that the 
12-month temporal boundary between different 
categories should be reduced to 3 months if the 
quality of the disease surveillance infrastruc-
ture of a country is deemed to be good. The Zika 
Algorithm thus links the counting of cases to the 
quality of surveillance. The footnote consequently 
outlines a bifurcation in how reported confirmed 
Zika cases are counted:

[The] Period might be reduced to 3 months 
in settings with high capacity for diagnostic 
testing, timely reporting of diagnostic results, a 
comprehensive arboviral surveillance system […] 
(see Figure 2)

To define the quality of the countries disease sur-
veillance the algorithm asks more questions: Does 
the country have diagnostic capacity? Timely 
reporting? A good surveillance system? Which 
Thomas, at the meeting, shortens to “The Brazil-
ian CDC is very good!” The reported confirmed 
cases of Zika are counted differently, which has 
the effect that each Zika case does not carry the 
same weight on the scale of Zika risk.

A consequence of this bifurcation of the yard-
sticks for Zika risk is that the boundary between 
different classes of Zika risk is not equal for all 
countries. Some groups of countries are judged 
by certain temporal yardsticks (12 months), while 
other countries are judged with another yardstick 
(3 months). But there is no visible trace of this 
bifurcation of boundaries in the Current Zika State. 
Clearly apparent categories of disease intensity 
are made visible on the map—red, orange, grey, 
white. No intermediate colors or categories. No 
fuzziness between classes. And no bifurcations of 
yardsticks. The categories and classifications of the 
Zika map appear as neatly delineated and unam-
biguous. The Current Zika State projects an image 

Figure 3. A bifurcation in the Zika algorithm. A zoomed in version of the Zika Algorithm above. 
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of an unambiguous world where Zika presence is 
clearly visible and bounded.

The Zika Algorithm intertwines quantification, 
judgment, agency, and opacity in several ways. 
That is, there are many ways that the algorithm 
composes power. This is a matter of the ontological 
politics of algorithms, of where choices can be made, 
and where power to effect things clots.

First, the configuration of choice: The Zika 
Algorithm was designed to “simply count cases 
in space and time.” But the boundaries between 
different classes of disease intensity were also 
intimately intertwined with the judgment of the 
quality of disease surveillance. The algorithmic 
logic of the Zika map was not only about quanti-
ties, counting cases in space and time, but about 
qualities as well. Algorithmic quantification and 
judgment were entwined—but not equally 
distributed.16 

Second, the making of situated algorithmic 
opacities: these struggles point to the impor-
tance of attending to the assembling of opacities 
in practice. For the general public viewing the 
Current Zika State map online, the map, the 
algorithm, and the choices made around it, are 
completely opaque. It seems to be a stable map of 
the Current Zika State. A classic algorithmic black 
box if there ever was one. However, the bifur-
cation of yardsticks was clearly visible, present, 
and understood by Thomas and Bertrand in the 
Emergency Operations Centre. Different degrees 
of opacity depend on the actors’ locations. This is 
an important methodological and analytical point: 
opacity is not binary or universal, opacity is situated.

Third, this points to how the making of algo-
rithmic agency, opacity and power is an achieve-
ment in practice. In this particular moment, 
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Figure 4. The Zika Algorithm branches out in time and space.
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main competent vector (Aedes aegypti) is present
or expected to be present.  This category includes
a sub-group of countries/territories/subnational
areas where ZIKV transmission may occur as they
share a physical ground border with a
neighbouring endemic area, belong to the same
ecological zone and have evidence of year-round
dengue virus transmission.

(3):  Period might be reduced to 3 months in
settings with high capacity for diagnostic testing,
timely reporting of diagnostic results, a
comprehensive arboviral surveillance system, and
a temperate climate/insular context.

Category 4
Area with presence of competent vector but no

known documented past or current ZIKV
transmission2

Review of ika virus (ZIKV) humans cases (vector
transmitted)

, mosquitoes or animals viral detection and/or sero-
surveys

Evidence of Zika
virus circulation ?

Laboratory criteria to ascertain the  endemicty of Zika virus (ZIKV) in an area1 : Detection of the virus in humans, animals
or mosquitoes (Period:1950-2014), and/or serologic confirmation of ZIKV infection with tests conducted after 1980.Yes

Yes
No cases before

and after
January 2015

agency and power to classify countries into 
different Zika zones was located with a particular 
set of experts in the Emergency Operations Centre 
at the ECDC. However, other actors, not present in 
the Emergency Operations Centre, were excluded 
from this moment of choice, and this particular 
moment of power. The making of opacity and 
power happens in practice. And different algorithmic 
assemblages configure opacity, agency, and power 
in different ways (cf. Mackenzie, 2014).

Oxford: layered translucencies 
| dispersed agencies
But there is also a different and parallel mode of 
sensing Zika at work in producing the Current 
Zika State, which creates another configuration 
of agency and power: that of environmental and 
ecological modeling. In this mode of sensing the 
Zika Algorithm is assembled to make Zika risk pre-
dictions based on computational models instead 
of on counting cases. For the algorithm, and the 
disease surveillance team at the ECDC, the atten-
tion is switched from counting disease cases in 
space and time to computing the potential pres-
ence of a Zika disease vector. Here, the algorithm 
moves from classifying a country based on count-
ing reported confirmed cases of Zika to classify-
ing the Zika state of a country based on computer 
modeling and risk prediction. In this mode of 
sensing Zika, the algorithm asks several additional 
questions:

◊	 Is the Aedes aegypti mosquito “expected to 
be present” in the area? 

◊	 Does the area “share a physical ground 
border” with an endemic area? 
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◊	 Are the areas part of the “same ecological 
zone?” 

◊	 Is there “evidence of year-round dengue 
virus transmission?” 

Each of these questions entangle the Current Zika 
State with other objects: mosquito ecologies and 
ecological zones (Is Aedes aegypti expected to be 
present?), physical geographies (Does the area 
share a physical ground border?), as well as with 
other diseases (dengue fever is also spread by the 
Aedes aegypti). Due to these questions, several dif-
ferent computer models become entwined with 
the Current Zika State. The Zika Algorithm is not 
only assembled to ask “Where is Zika?,” but also 
“Where is the Aedes aegypti mosquito?;” “Where is 
there dengue-fever?;” and “Where is a fitting eco-
logical zone?” To follow one part of this rhizome of 
algorithmic classification, we shift our attention to 
how the Aedes aegypti mosquito is included in the 
Zika Algorithm (see Figure 5).17 

Importantly, for our story, is that the Aedes 
aegypti mosquito is understood to be the most 
important disease vector for the Zika virus.18 The 
actors’ argument is that knowledge of where the 
mosquito roams, will also allow an assessment of 

the risk of Zika virus transmission. Thus, to know 
where the Aedes aegypti might exist expands the 
modes of sensing Zika.

To trace how the Aedes aegypti becomes 
included in the assemblage we move our story to 
a group of ecological modelers at Oxford Univer-
sity, where the computational model that the 
ECDC uses to predict Aedes aegypti presence was 
produced (see Figure 6). Over several decades, this 
group has developed a modelling approach that 
attempted to find covariances between species’ 
habitat and environmental factors:

[…] we concentrate on the use of maps to increase 
our understanding of the biological and other 
processes that determine the distribution and 
abundance of species in space and time. Which are 
the important variables; how do they act; and how 
do they differ […]?
(Rogers, 2007: 3)

The group’s computational methodology to trace 
different species was based on linking known 
geographical habitats with environmental factors 
extracted from satellite data or climate databases, 
such as temperature, rain, elevation, or density of 

Figure 5. The Aedes aegypti.19
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Figure 6. Map of Aedes aegypti risk. Green marks low risk. Yellow and orange denotes increasing risk for presence 
of Aedes aegypti.20

 

Figure 7. Aedes aegypti map of the USA from 2008.23

 

human habitation. The model used at the ECDC 
matched known locations of the Aedes aegypti 
with environmental characteristics to predict the 
mosquito risk on a global scale.

The Oxford group used two sets of data to 
model Aedes aegypti risk: First, a bespoke database 

of where the Aedes aegypti is found. This database 
was produced by combining known Aedes aegypti 
occurrences harvested from the scientific litera-
ture, with an Aedes aegypti map produced by 
the United States CDC (see Figure 7).21 Second, 
the group utilized environmental data stemming 
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from satellites and climate databases from a 
host of different sources. For example, they used 
“satellite rainfall estimates” stemming from the 
US National Weather Service (which incorporated 
data from nine different satellites) as well as data 
from several different climate models.22

This was the basis for their modeling of the 
Aedes aegypti: finding covariances between a 
bespoke database of mosquito occurrences and 
several layers of environmental data taken from 
many different sources.

In order to simplify the global environmental 
data, the team used a mathematical technique 

 

Figure 8. An illustration of the result of a Temporal Fourier analysis of environmental data (Scharlemann et al., 
2008: 8).

Figure 9. Temporal Fourier analysis of global Enhanced Vegetation Index (EVI) translated into ecological zones on 
a map (Scharlemann et al., 2008: 7).

 

called temporal Fourier analysis, which is used to 
simplify the representation of different types of 
signals (see Figure 8). By using this technique the 
Oxford team transformed the environmental data 
into a series of mathematical formulas that aimed 
to describe “information about the seasonal 
cycles of these indices in terms of their annual, 
bi-annual, tri-annual etc. cycles (or ‘harmonics’), 
each one described by its phase and amplitude” 
(Rogers, 2000: 138). These “harmonics” were then 
used to create several climate zones, that the team 
sometimes represented by transforming the envi-
ronmental harmonics into colors on a map (see 
Figure 9).

Science & Technology Studies 34(1)
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Figure 10. Illustration of Non-linear discriminant analysis (Robinson et al., 1997: 237).

To then find covariances between the environ-
mental data, derived from the temporal Fourier 
analysis, and the mosquito data, the Oxford group 
employed a computational technique called non-
linear discriminant analysis (see Figure 10). This 
technique was used to predict the risk of Aedes 
aegypti occurrences on the basis of the many 
different environmental harmonics outlined 
above (rainfall, vegetation, etc.).

The mode of sensing described above illus-
trates how the Current Zika State is built by incor-
porating many different times, places, people, 
computations, and efforts. And, as I hinted at 
the outset of this section, the Current Zika State 
is not only tied to the Aedes aegypti model. The 
Zika Algorithm also incorporated a dengue fever 
model produced by the same Oxford team, as well 
as a climate classification of the world based on 
the commonly used Köppen-Geiger climate clas-
sification of the globe—which was first published 
in 1884 (see Figure 11 for a recently updated 
version). The algorithm thus expanded backwards 
and outwards in both time and space. Through a 
veritable flood of computational resources, a map 
of Zika risk was born.

Let us now return to our questions of assem-
bling of agency and opacity. That is, to how the 
assembling of the Zika Algorithm enacts particular 
patterns of power. Where is agency to classify 
located when Zika is sensed by modelling risk of 
mosquito presence? What types of situated trans-
parencies are made through the Zika algorithm? 
And where is power located?

In the case of the Aedes aegypti risk map, 
agency is certainly focused in Oxford, with the 
team of ecological modelers. But agency is also 
dispersed over a vast array of places and times: it 
is located at the US CDC in producing the Aedes 
aegypti map of the USA; in entomological expedi-
tions globally trying to determine where the Aedes 
aegypti thrives; in satellite sensors that detect 
radiation, rainfall or vegetation; and at the ECDC 
who have commissioned the modelling from the 
Oxford team and integrated it into their work (cf. 
Segata 2020, Edwards, 2010).

Agency and power are thus dispersed over 
time and space, in various parts of the algorithmic 
assemblage at different locations, with relations to 
other infrastructures, other scientific teams, and 
other practices. There is a myriad of classifications 
made in a myriad of places. There is no center of 
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calculation, nor a central algorithm, but a hetero-
geneous assemblage of dispersed calculative 
efforts (cf. Latour, 1987).

Consequently, in terms of enacting opacity 
and calculative power, the classification of Zika 
risk is multilayered, multi-situated and extremely 
dispersed. For a handful people at the ECDC some 
layers of computation (the Aedes aegypti risk map, 
the Dengue map, or the Köppen-Geiger map) are 
visible as computational possibilities. But some 
parts of the computational assemblage, recede 
into the fog of the unknown.

Various facets of algorithmic classification 
and valuation thus drop in and out of visibility 
depending on the actors’ location in the assem-
blage. The algorithm is never completely opaque, 
but neither is it completely transparent. My 
argument is that opacity is multi-situated and 
dispersed. There is a series of translucencies 
of varying degrees that spread over different 
practices (cf. Jordan and Lynch, 1992). In contrast 
to the counting cases in space and time, this mode 
of sensing, seems to produce a dispersed calcula-
tive power which is not located in a single place.

Sri Lanka and Pakistan: 
translucency and situatedness

Coming back to Thomas’ and Bertrand’s meeting, 
another senior team member, Sergio, has joined 
the meeting in the Emergency Operations Centre. 
Talk has moved to the question if a country or area 
shares “a physical ground border,” another question 
inscribed in the algorithm, and if this can be 
handled automatically. Sergio brings up Sri Lanka: 

“Is Sri Lanka ecologically connected to India?” he 
asks. 

On the scale of a world map, Sri Lanka and Tamil 
Nadu look quite separate. I don’t understand the 
question. But Sergio points to the series of shoals 
and small islands called Rama’s Bridge (see Figure 
12). Does Rama’s Bridge connect the two land 
masses? And more importantly, is it a passage for 
the Aedes aegypti mosquito? On the map of the 
Current Zika State, Tamil Nadu in southern India is 
classified as having Zika transmission, and tinted 
orange. Should Sri Lanka then be classified as being 
at risk or not? 

Bertrand and Sergio are arguing that there 
needs to be a “sort of expert-based judgment” on 
whether a country shares a physical ground border 
or not. 

Figure 11. A Köppen-Geiger climate classification map.24

 

Science & Technology Studies 34(1)



79

Figure 12. Rama’s bridge between Tamil Nadu and Sri Lanka.25

 

“There will always be exceptions. We can’t 
automate bordering countries.” Bertrand says. 
(Fieldnotes) 

Apparently, the algorithm cannot handle all physi-
cal ground borders.

The challenges that Rama’s bridge, and cases 
like it, pose to the mapping of Zika across the 
globe are monumental. Disentangling and clas-
sifying the world’s geographical borders in terms 
of mosquito—geography is an enormous task, 
needing intimate knowledge about the geogra-
phies and ecologies of regions as well as reliable 
and comprehensive data on the range of the 
Aedes aegypti mosquito (cf. Segata 2020). Thus, 
the alluring promise of algorithmic classification 
threatens to fall apart in the face of ecologies and 
the range of the infamous Aedes aegypti. Thomas, 
Bertrand and Sergio are caught in an algorithmic 
dilemma. What parts of the Zika Algorithm are 
possible to automate fully? And what parts need 
human judgment? Where should agency reside? 
Ontological politics to the highest degree.

A few weeks after the meeting I visit Thomas and 
Bertrand to discuss the Current Zika State again. 
Thomas tells me that the ECDC and the WHO have 
had a disagreement about the Zika classification of 

India. The point of contention was that two cases 
of Zika had been reported in Pakistan. According 
to the Zika Algorithm, that event should have 
reclassified the whole sub-continent of India as 
having risk for Zika transmission. However, the 
ECDC argued that the reclassification of the whole 
Indian sub-continent on the basis of two travel-
related cases was absurd. A billion people would 
have been affected. The WHO on the other hand 
argued that the algorithm should be followed. 
The challenge was one of judging the output of 
the algorithm. What was a good tipping point for 
reclassifying the whole Indian sub-continent? Were 
two travel-related cases enough? (Fieldnotes)

The data points of disease surveillance are shifting, 
ambiguous, and spotty (cf. Gitelman, 2013). They 
change over time, they come with different defi-
nitions. Is this case laboratory confirmed? Does it 
fit with the current definition of a case? What did 
the contact-tracing of the case show? Was the 
case travel-related? The counting of cases takes 
judgment and choice. How should two travel 
related cases in Pakistan be counted? And in 
the case of Rama’s Bridge: How should the inter-
twining of mosquito ecologies and political geog-
raphies be handled?
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My point is that data—even counting disease 
cases—is also translucent to different degrees, 
depending on your location in the assemblage. In 
the case of Rama’s Bridge, Sergio struggled with 
the qualities of geographical boundaries. The 
simple algorithmic definition of “sharing a ground 
border” is judged to be too complex to automate 
when dealing with mosquito ecology. That is, 
Sergio grappled with reconciling the qualities of 
ecological zones, the challenge of judging the 
possibility of zika transmission over ecological 
habitats, and how to make this disease risk visible 
in terms of political geography.

An algorithm for classifying the world neces-
sarily needs to simplify, but in the simplifica-
tion, we might attend to what is made visible 
and invisible. What is hidden from view, and for 
whom? And what are the consequences of doing 
this? At the ECDC, the space for choosing path—
agency and power—was often large. The Zika 
algorithm and the underlying data was constantly 
challenged, tweaked, and reconfigured before it 
was published as the Current Zika State. However, 
the spaces for choosing path were not equally 
distributed. Different modes of sensing produced 
different configurations of power.

Some lessons about the politics 
of algorithms: punctualization, 
situated translucency, and power
Above, I have followed how the Current Zika State 
was assembled, in doing this I attended to how 
different modes of algorithmic sensing produced 
different spaces for agency, translucency, and 
power. But rather than taking as point of depar-
ture preconceived notions about the power or 
effects of the algorithm I have traced how agency 
and translucency varies depending on the config-
uration of the assemblage.

What is at stake with this intervention are issues 
of politics and power. I argue that by analyzing 
algorithmic assemblages as they branch out in 
multiple and situated practices, we gain a better 
understanding of how algorithmic power is struc-
tured and works to shape the world. Hopefully, 
this will allow us to leave the determinist and 
reductionist logic of “black boxed algorithms that 
control our future” behind us. The point of this 
exercise is to prevent that the performed object—

algorithm—defines, delimits, and steers our 
inquiries into the politics of algorithms. 

There are several lessons to be learned from 
tracing the Zika Algorithm, and I therefore 
suggest three methodological rules to protect us 
against falling in the epistemic trap of the stabi-
lized algorithm.

Rule 1: Don’t punctualize agency | Attend to 
how agency and choice are assembled 
Our first lesson. Do not treat algorithms as stable 
objects out there for us to apprehend and ana-
lyze. Attend to algorithmic assemblages as always 
already distributed and performed. Algorithmic 
assemblages are truly fluid, heterogeneous, and 
dispersed. Not only in the sense that they include 
agencies of different shapes and forms, but also 
in how the qualities and characteristics of algo-
rithmic assemblages shift and meander. These are 
well worn perspectives in STS, but the tendency 
to ascribe and punctualize agency to the powerful 
algorithm is tempting—and continues to tempt 
us.

The consequence of the assembled perspec-
tive on algorithms is that agency must be 
analyzed as being entangled with the objects that 
we perform as algorithms—not as an inherent 
property of them. In practice there are almost 
always struggles about how these assemblages 
should be structured. Thus, the composition of 
algorithmic assemblages often becomes the site 
of political struggles and practical tinkering to 
assemble these elements in different ways.26 

For instance, as I have shown above, the 
space for challenging the Zika classification of a 
country is large in certain spaces at the ECDC—
but the space for challenging the global range 
of the Aedes aegypti is smaller. The expertise and 
knowledge about the mathematics of mosquito 
prediction being located with a group of modelers 
of mosquitos, while expertise about disease clas-
sification was located at the ECDC. What we can 
observe is that the space for agency, action, or 
judgment is not equally distributed. The spaces 
for choice and action are redistributed by the 
different modes of sensing that the algorithm 
engenders. 

Consequently, the power of algorithms is not 
a stable proposition, where some actors (e.g. 
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Google’s or Facebook’s algorithms) have all the 
power, and others (the technical dope that uncriti-
cally clicks on search results or consume their 
daily Facebook feed) have none (Garfinkel, 1967; 
Lynch, 2012). That is, algorithms move choice 
around, and the space for choice is not the same 
for everyone. 

The point is that we can attend to how spaces 
for agency and choice open up and close in 
various places of the assemblage—how they are 
assembled—without succumbing to the epistemic 
trap of punctualization. This perspective instead 
raises several questions about the ontological 
politics of algorithms (Mol, 1999). These are 
age-old questions about choice and power. Where 
can choice be located? Who can make choices? 
Who or what can act? What types of actions or 
choices are enabled or disabled? Where? When?

Rule 2: Abandon the opaque/transparent 
binary | Attend to situated translucencies
Our second lesson. Do not treat algorithms as being 
binarily opaque or transparent. Algorithmic assem-
blages are always situated and translucent to vari-
ous degrees (cf. Jordan and Lynch, 1992).27 For the 
sociologist of algorithms it has become common 
to lament the power, inscrutability, and opacity of 
the algorithm. But the proliferation of articles clas-
sifying different types of opacity hints at a marked 
analytical unease about the binary notion of trans-
parency/opacity in critical studies of algorithms.28

As with agency, algorithmic translucencies 
are assembled in multiple locations, in multiple 
versions, in relation to multiple people (cf. Mol, 
2002). People have situated knowledge about 
the algorithm (Haraway, 1988). Which means that 
algorithmic assemblages can be differently under-
stood in different situations and are therefore 
neither completely opaque, nor completely trans-
parent. Opacity is not only varying in degree or 
type, but also varies depending on the actor’s situ-
atedness.29 

In the assembling of the Zika Algorithm, 
choices and judgments were clearly transparent, 
discussed, and available for scrutiny in certain 
rooms and moments, like when my informants 
judged countries’ quality of disease surveil-
lance and inscribed their judgments into the 
algorithm. In other places, choices, computa-

tions, and judgments faded away and became an 
invisible part of an opaque algorithm, as when my 
informants harnessed the modelling of mosquito 
presence to make risk assessments about Zika. 
Translucencies are thus constantly opened and 
closed, made and remade in practice.

Our lesson is that, in practice, algorithmic 
opacity is neither binary nor homogeneous. It is 
situated, gradual, and affects different actors in 
different ways. We need to analyze these various 
translucencies as they are enacted in various and 
situated practices. What is made visible? How is it 
made visible? To whom or to what? Where?

Rule 3: Abandon the algorithm as the prime 
mover | Attend to how power clusters
As a consequence of these insights, I argue that 
algorithmic politics should be analyzed by paying 
attention to how algorithmic assemblages configure 
agency, translucency, and power in practice—not 
by auditing a sole algorithm for biases. As we have 
seen, different modes of sensing the Zika pan-
demic, makes for very different configurations 
of agency, translucency, and power. Counting 
cases and entering them into a geopolitical time 
and space makes for a particular configuration 
of agency and translucency, while environmen-
tal modelling to predict disease risk makes for a 
very different configuration (cf. Mackenzie, 2014). 
We should therefore attend to the performance, 
locations, and unevenness of power in algorithmic 
assemblages. 

This is our third lesson, which is about investi-
gating the assembling of power (cf. Callon and Law, 
2005; Callon and Muniesa, 2005). The algorithmic 
production of the Current Zika State is a dispersed 
assemblage in practice. It is spread over time and 
space. The algorithm does not produce a center 
of calculation (Latour, 1987), but a vast network of 
calculation extending outward in time and space 
(Edwards, 2010). Thus, just as the Arizona stock 
exchange, shopping lists, prices on shelves, and 
shopping carts open and close certain spaces for 
visibility, calculation, and agency, so does the Zika 
Algorithm open and close spaces for choice and 
intervention. It opens and closes spaces for algo-
rithmic power.30 

Thus, algorithmic power accumulates in 
different places—as a cluster in a multitude, or a 
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knot in a rhizome—which can include both the 
mundane and the exotic, the human and the 
non-human. Where an algorithmic assemblage 
will concentrate power is not a given but negoti-
ated in multiple situations. We need to understand 
how this happens to truly understand algorithmic 
power.

For sociologists trying to understand how algo-
rithms shape society it is not enough to audit 
the stabilized algorithm for fairness or transpar-
ency. As Strathern has pointed out, “audit cannot 
afford to tolerate loose ends, unpredictability, or 
disconnections. […] This means that what may 
be brilliant accounting is bound to be very poor 
sociology” (Strathern, 2002: 309).

Hence, it is crucial to move beyond the trope of 
auditing the powerful algorithm, and to analyze 
how algorithmic systems are designed, tinkered 
with, and interpreted in practice (Neyland, 2018; 
Ziewitz, 2017). Algorithms involve countless situ-
ations where quantification and judgment are 
entwined in different ways.31 Rather than auditing 
the algorithm (stable singular) for fairness this 
analytical move opens for description of how 
spaces for agency and avenues of seeing are 
made in algorithmic assemblages. Rather than 
focusing on the binary opacity/transparency of 
the algorithm, these methodological rules open 
for an analysis of different actors facing different 
degrees of agency and transparency. 

Rather than punctualizing the inherent oppres-
sion or bias to the algorithm, it would open for a 
situated understanding of multiple power effects. 
Not as disembodied black boxes—truly deus ex 
machina—that reshape the economy, oppress the 
poor, or are race/sex/*-ist. But as assemblages of 
varying degrees of power (that certainly can lead 
to oppressive outcomes!). By doing this we could 
better understand how algorithmic politics works in 
practice. Which (for sure!) can have effects that are 
oppressive, racist, and sexist. 

Conclusion: some elements in 
a sociology of algorithms
As multiple waves of pandemics and epidem-
ics sweep the world—not least in the midst of 
the current COVID-19 pandemic—the nature 
and characteristics of each successive pandemic 
becomes increasingly tied to algorithms, models, 

and computation. This article has traced how a 
particular pandemic, of Zika, was assembled with 
an algorithm. I have shown how algorithms play a 
crucial role in assembling the intensities, risks, and 
projections for the future. 

A pandemic is made in a web of infrastructures 
and practices around the world. The state of the 
Zika pandemic depended on practices of counting 
(cases and mosquitos—in hospitals, jungles, and 
elsewhere), computational modelling, decisions in 
organizations and by algorithms, and so on. In this 
case, the counting of cases was also folded with 
climate data and risk modelling the presence of 
mosquitos. What this shows, is that a pandemic 
can be composed in many different manners that 
are often folded together as a seamless whole (cf. 
Mackenzie, 2014). 

But, as we have seen, not least in the current 
COVID-19 pandemic, constant debates about 
how to count erupt. What do these numbers 
mean? How much are we testing? Are these tests 
reliable? Can we trace disease through sewage? 
Should we count nationally or regionally? Over 
time, the manners in which the pandemic is 
enacted unfolds in different manners. That is, 
different manners of assembling and visualizing 
the pandemic are intensely political, and choices 
are made by different actors, in different times 
and places. However, it is not a politics of a sole 
algorithm. It is a myriad of relations that assemble 
a pandemic. 

The article has followed some of the practices of 
assembling the Zika epidemic with an algorithm. 
Apart from making this global epidemic in 
particular ways, the effect of harnessing the 
algorithm is that it opens and closes particular 
calculative spaces that move agency and choice, 
produce particular visibilities, and shape asym-
metries of power. Drawing on this analysis I have 
proposed three methodological rules for the 
social analyst of algorithms. 

Rule 1: Don’t punctualize agency, attend to how 
agency and choice are assembled

Rule 2: Abandon the opaque/transparent binary, 
attend to multiple and situated translucencies

Rule 3: Abandon the algorithm as the prime 
mover, attend to how power clusters and disperses
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This analytical strategy has allowed me to outline 
an alternate route to analyzing politics, opacity, 
and the assembling of power with algorithms. 
This route emphasizes that algorithms are inter-
twined with multiple practices, and not set apart 
from them. 

Importantly this approach bypasses the 
epistemic trap that results in treating algorithms 
as powerful black boxes that shape our lives 
and oppress the poor, and opens up a route for 
an analysis of algorithmic power as it unfolds in 
practice (cf. Muniesa, 2019). Thus, rather than 
attending to algorithms as singular and determin-
istic moments of fairness/bias, or as being binarily 
opaque/transparent, the article has followed the 
many ways in which algorithms come to shape 
agency, visibilities, and power, as well as the 
making of a threatening pandemic. 

These analytical strategies can help focus 
questions around algorithmic functions beyond 
the common adages of “algorithms are a modern 
myth,” “algorithms are opaque,” and “algorithms 
shape our world.” Asking about how algorithms 
open and close different spaces for agency and 
choice, produce particular visibilities, and shape 
asymmetries of power enables us to tell stories 
that are sensitive to the fluidity of algorithms, 
and enables an analysis of their power—as it is 
assembled in practice.
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Notes
1  See Kelly et al. (2020) and Löwy (2017) for a background on the Zika crisis in Brazil. 

2  In this, I use the concept of assemblage drawing on Actor-Network sensibilities. That is, I see an assem-
blage as a network of objects of heterogeneous character whose ongoing relations shape the direction 
of the whole network (Callon, 2007). Other synonyms for assemblage analysis are: actant-rhizome 
ontology (Latour, 1999), hybrid collectifs (Callon and Law, 1995), or agencement (Deleuze and Guattari, 
1987). The point of such an analysis is to not presume where agency resides, but rather to trace the 
relations by which it is assembled in particular locations.

3 The computer science definition of an algorithm seems to be the dominant definition in STS. In 
computer science thick catalogs of optimal algorithms for different tasks are published and updated 
regularly (Knuth, 1997). In the The New Oxford American Dictionary algorithms are defined as “a process 
or set of rules to be followed in calculations or other problem-solving operations, especially by a 
computer: a basic algorithm for division.” The word itself is said to hark back to the name of the Persian 
mathematician al-Khwārizmī, who developed a systematic method for solving equations—laying the 
foundation for modern algebra. In other settings, an algorithm can be a simple (or complex) flowchart 
for medical treatment. I.e. take a sample for culture from a patient, let sample sit in a petri-dish, if there 
are bacteria there, give the patient antibiotics, if no bacteria are present tell her that it is probably a 
virus and that s/he needs to rest.

4 Thanks David Moats for this useful comment on the politics of algorithms. 

5 This analytical stance draws on practice-oriented post-ANT sensibilities (Lee et al., 2019; Neyland, 2018; 
Ziewitz, 2017).

6 As many have pointed out algorithms are often part of a distributed assemblage (Ananny, 2016; 
Gillespie, 2014; Kitchin, 2016; Seaver, 2018). For instance, Seaver points out that “Presuming that algo-
rithms must have a stable and coherent existence makes it harder, not easier, to grapple with their 
production and ongoing maintenance.” (Seaver, 2017)

7 Sometimes these understandings of algorithms go hand in hand, for instance when complexity and 
the fearful opacity of algorithms seem to meet (Burrell, 2016).

8 https://facctconference.org/

9 This epistemic trap has led to the unfortunate state of affairs where the black box metaphor in actor-
network theory—which was a cry for opening black boxes—has become conflated with lamentations 
of methodological problems of field access, secrecy, and understanding complexity. The black box 
metaphor in actor-network theory was never meant to be used to describe a stable state of affairs, 
but to highlight the human and social tendency to punctualize networks of relations in black boxes. 
Opening the black box was always a metaphor for uncovering heterogeneous networks of perfor-
mances, relations, stabilizations of the world. The conflation is understandable, but unfortunate, if we 
want to actually do social analyses of the unfolding algorithmic society.

10 In the words of Muniesa: “Often qualified as critical, this alternative [analysis of algorithms], is expressed 
today by an abundant literature that […] is recognized in the rhetoric of the “black box:” that of the 
computer code, it is that is to say that of the political, economic, cultural encoding that this code serves, 
an encoding that it is therefore a question of “decrypting” in order to expose the “power of algorithms”. 
This alternative, generally endowed with a more or less emancipatory vision, however, often seeks 
more to renew the premises cultivated by the computer environment than to free itself from them.” 
(Muniesa, 2019: 205)

11 In the terminology of Lakoff (2010), disease surveillance sits squarely in the “global health security 
regime” which focuses on preventing disease threats toward the population, in this case the popula-
tion of the EU. See also Lakoff (Keck and Lakoff, 2013; Lakoff, 2017b). 
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12 Different parts of the network of disease surveillance are important for different diseases. For instance 
for the surveillance of the seasonal (or otherwise) flu, disease surveillance in Hong Kong and Indonesia 
are important centers (Keck, 2014; Lakoff, 2010). 

13 For the politics of disease surveillance, see for instance the wide-ranging scholarship centered around 
studying the politics and expertise of biosecurity (Bingham and Hinchliffe, 2019; Fearnley, 2008; Hinch-
liffe et al., 2012; Lakoff, 2008, 2014, 2017a; Lakoff and Collier, 2008). On Salmonella politics see Lee 
(2020). 

14 The Zika Algorithm is not a sentinel device in the sense that it serves as an early warning system, but 
it nevertheless serves to produce a particular charismatic image of the Zika epidemic. It produces the 
pandemic as an object in society and nature. On sentinel devices, see Keck and Lakoff (2013) on the 
power of charismatic evidence see Kelly (2018). 

15 The ranking of different countries’ disease surveillance resonates with MacPhail’s (2014: 6) discussion 
about the assessment of “good” information in US disease surveillance. 

16 Compare to the counting of genes and protestors in (Martin and Lynch, 2009).

17 We could drill down in all these risk classifications, but it will suffice to focus on one to make my points. 

18 Mosquitos regularly become targets for intervention in disease control and surveillance. Different 
breeds are adept at spreading different diseases. The Aedes aegypti spreads Chikungunya, Dengue, 
and Zika. While other breeds spread for instance Yellow fever, West Nile fever, or Malaria. Mosquitos 
have therefore played a significant role in public health work in tropical climates (Kelly and Lezaun, 
2013; cf. Löwy, 2017; Mitchell, 2002; Shapin, 2020). Birds also regularly become the targets of disease 
surveillance, especially in the wake of the multiple forms of bird flu. See for instance (Keck, 2014, 2020; 
Porter, 2012, 2013, 2019)

19 Downloaded from: https://en.wikipedia.org/wiki/Aedes_aegypti#/media/File:Aedes_aegypti.jpg. 

20 Downloaded from https://e3geoportal.ecdc.europa.eu/SitePages/E3%20Map%20Viewer.aspx#

21 The bespoke database produced by the Oxford team was assembled by searching the scientific litera-
ture, in PubMed and Web of Science, for locations where Aedes aegypti had been found.⁠ The US CDC 
database of Aedes aegypti occurrences was a map of counties in the USA where Aedes aegypti existed. 
This map was originally published in 1965 and augmented in 2008. 

22 They used NASA’s Terra satellite to obtain spectroradiometer data and elevation. From the Worldclim 
database they incorporated temperatures and rainfall. They also drew on the HADCM3 climate model, 
which was produced for the IPCC. Lastly, estimated human population density/km2 was obtained from 
the Global Rural-Urban Mapping project.

23 US CDC map unavailable at the original location, however it is republished in Wang et al. (2014).

24 See https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification#/media/File:K%C3%B6ppen-
Geiger_Climate_Classification_Map.png

25 Downloaded from https://earth.esa.int/documents/257246/3374126/Adams-Bridge-Sentinel-2-
17112017-full 

26 See for instance Cochoy’s (2008) analysis of how agency to calculate is configured in shopping practices.

27 Opacity and transparency can be seen as two sides of the same coin. See for instance (Tsoukas, 1997).
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28 The literature on algorithms has dealt with the shifting nature of opacity by for instance identifying 
more typologies for transparency/opacity (Ananny and Crawford, 2018); and by acknowledging that 
transparency/opacity is not a binary affair, but a gradual continuum between total transparency and 
total opacity (Diakopoulos, 2020). For instance, Burrel (2016) identifies three types of opacity, while 
Ananny & Crawford (2018) discuss the challenges of the transparency/opacity ideal. There is also a 
growing analytical awareness that “The convoluted interrelationships among different technical 
and human components often complicate and tend to obfuscate accountability for lapses of ethical 
behavior.” (Diakopoulos, 2020). See also de Fine Licht and de Fine Licht  (2020)

29 Which Seaver (2017: 5) has observed in terms of the anthropological interest in secrecy. See also (Albu 
and Flyverbom, 2019) for an organizational argument for analyzing transparency/accountability in 
practice.

30 For shopping carts, see Cochoy (2008), and for an analysis of the Arizona stock exchange, see Muniesa 
(2014). 

31 Qualculation one might even say (Callon and Law, 2005; Cochoy, 2008).
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